90 research outputs found

    Using radiative signatures to diagnose the cause of warming during the 2013–2014 Californian drought

    Get PDF
    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013–2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001–2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.This research was supported by the European Commission’s FP7 (S.W., Marie Curie International Outgoing Fellowship, grant 300083) and ETH Zurich. D.Y and M.L.R are supported by the Australian Research Council (CE11E0098), and D.Y. acknowledges support by the National Natural Science Foundation of China (51609122)

    The contribution of reduction in evaporative cooling to higher surface air temperatures during drought

    No full text
    Higher temperatures are usually reported during meteorological drought and there are two prevailing interpretations for this observation. The first is that the increase in temperature (T) causes an increase in evaporation (E) that dries the environment. The second states that the decline in precipitation (P) during drought reduces the available water thereby decreasing E, and in turn the consequent reduction in evaporative cooling causes higher T. To test which of these interpretations is correct, we use climatic data (T, P) and a recently released database (CERES) that includes incoming and outgoing shortwave and longwave surface radiative fluxes to study meteorological drought at four sites (parts of Australia, US, and Brazil), using the Budyko approximation to calculate E. The results support the second interpretation at arid sites. The analysis also showed that increases in T due to drought have a different radiative signature from increases in T due to elevated COâ‚‚.This research was supported by the Australian Research Council (CE11E0098), the National Natural Science Foundation of China (91125018), and the China Scholarship Council (201306210089)

    Dopant-Free Donor (D)–p–D–p–D Conjugated Hole- Transport Materials for Efficient and Stable Perovskite Solar Cells

    Get PDF
    Three novel hole-transporting materials (HTMs) using the 4-methoxytriphenylamine (MeOTPA) core were designed and synthesized. The energy levels of the HTMs were tuned to match the perovskite energy levels by introducing symmetrical electron-donating groups linked with olefinic bonds as the bridge. The methylammonium lead triiodide (MAPbI(3)) perovskite solar cells based on the new HTM Z34 (see main text for structure) exhibited a remarkable overall power conversion efficiency (PCE) of 16.1% without any dopants or additives, which is comparable to 16.7% obtained by a p-doped 2,2,7,7-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9-spirobifluorene (spiro-OMeTAD)-based device fabricated under the same conditions. Importantly, the devices based on the three new HTMs show relatively improved stability compared to devices based on spiro-OMeTAD when aged under ambient air containing 30% relative humidity in the dark

    Mapping the Distribution of Water Resource Security in the Beijing-Tianjin-Hebei Region at the County Level under a Changing Context

    Get PDF
    The Beijing-Tianjin-Hebei (Jingjinji) region is the most densely populated region in China and suffers from severe water resource shortage, with considerable water-related issues emerging under a changing context such as construction of water diversion projects (WDP), regional synergistic development, and climate change. To this end, this paper develops a framework to examine the water resource security for 200 counties in the Jingjinji region under these changes. Thus, county-level water resource security is assessed in terms of the long-term annual mean and selected typical years (i.e., dry, normal, and wet years), with and without the WDP, and under the current and projected future (i.e., regional synergistic development and climate change). The outcomes of such scenarios are assessed based on two water-crowding indicators, two use-to-availability indicators, and one composite indicator. Results indicate first that the water resources are distributed unevenly, relatively more abundant in the northeastern counties and extremely limited in the other counties. The water resources are very limited at the regional level, with the water availability per capita and per unit gross domestic product (GDP) being only 279/290 m3 and 46/18 m3 in the current and projected future scenarios, respectively, even when considering the WDP. Second, the population carrying capacity is currently the dominant influence, while economic development will be the controlling factor in the future for most middle and southern counties. This suggests that significant improvement in water-saving technologies, vigorous replacement of industries from high to low water consumption, as well as water from other supplies for large-scale applications are greatly needed. Third, the research identifies those counties most at risk to water scarcity and shows that most of them can be greatly relieved after supplementation by the planned WDP. Finally, more attention should be paid to the southern counties because their water resources are not only limited but also much more sensitive and vulnerable to climate change. This work should benefit water resource management and allocation decisions in the Jingjinji region, and the proposed assessment framework can be applied to other similar problems.This study is supported by the National Key Research and Development Program of China (2016YFC0401401) and the National Natural Science Foundation of China (51609256, 51609122, 51522907, 51739011, and 51569026). Partial support is also from the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology (2017QNRC001

    Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials

    Get PDF
    The exploration of alternative low-cost molecular hole-transporting materials (HTMs) for both highly efficient and stable perovskite solar cells (PSCs) is a relatively new research area. Two novel HTMs using the thiophene core were designed and synthesized (Z25 and Z26). The perovskite solar cells based on Z26 exhibited a remarkable overall power conversion efficiency (PCE) of 20.1%, which is comparable to 20.6% obtained with spiroOMeTAD. Importantly, the devices based-on Z26 show better stability compared to devices based on Z25 and spiroOMeTAD when aged under ambient air of 30% or 85% relative humidity in the dark and under continuous full sun illumination at maximum power point tracking respectively. The presented results demonstrate a simple strategy by introducing double bonds to design hole-transporting materials for highly efficient and stable perovskite solar cells with low cost, which is important for commercial application

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Separating warming-induced drought from drought-induced warming

    No full text
    ISSN:1029-7006ISSN:1607-796
    • …
    corecore